Extensions 1→N→G→Q→1 with N=C4 and Q=S32

Direct product G=N×Q with N=C4 and Q=S32
dρLabelID
C4×S32244C4xS3^2144,143

Semidirect products G=N:Q with N=C4 and Q=S32
extensionφ:Q→Aut NdρLabelID
C41S32 = S3×D12φ: S32/C3×S3C2 ⊆ Aut C4244+C4:1S3^2144,144
C42S32 = D6⋊D6φ: S32/C3⋊S3C2 ⊆ Aut C4244C4:2S3^2144,145

Non-split extensions G=N.Q with N=C4 and Q=S32
extensionφ:Q→Aut NdρLabelID
C4.1S32 = C3⋊D24φ: S32/C3×S3C2 ⊆ Aut C4244+C4.1S3^2144,57
C4.2S32 = D12.S3φ: S32/C3×S3C2 ⊆ Aut C4484-C4.2S3^2144,59
C4.3S32 = C325SD16φ: S32/C3×S3C2 ⊆ Aut C4244+C4.3S3^2144,60
C4.4S32 = C323Q16φ: S32/C3×S3C2 ⊆ Aut C4484-C4.4S3^2144,62
C4.5S32 = S3×Dic6φ: S32/C3×S3C2 ⊆ Aut C4484-C4.5S3^2144,137
C4.6S32 = D125S3φ: S32/C3×S3C2 ⊆ Aut C4484-C4.6S3^2144,138
C4.7S32 = D6.6D6φ: S32/C3×S3C2 ⊆ Aut C4244+C4.7S3^2144,142
C4.8S32 = C322D8φ: S32/C3⋊S3C2 ⊆ Aut C4484C4.8S3^2144,56
C4.9S32 = Dic6⋊S3φ: S32/C3⋊S3C2 ⊆ Aut C4484C4.9S3^2144,58
C4.10S32 = C322Q16φ: S32/C3⋊S3C2 ⊆ Aut C4484C4.10S3^2144,61
C4.11S32 = D12⋊S3φ: S32/C3⋊S3C2 ⊆ Aut C4244C4.11S3^2144,139
C4.12S32 = Dic3.D6φ: S32/C3⋊S3C2 ⊆ Aut C4244C4.12S3^2144,140
C4.13S32 = S3×C3⋊C8central extension (φ=1)484C4.13S3^2144,52
C4.14S32 = C12.29D6central extension (φ=1)244C4.14S3^2144,53
C4.15S32 = D6.Dic3central extension (φ=1)484C4.15S3^2144,54
C4.16S32 = C12.31D6central extension (φ=1)244C4.16S3^2144,55
C4.17S32 = D6.D6central extension (φ=1)244C4.17S3^2144,141

׿
×
𝔽